Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
J Am Dent Assoc ; 154(3): 194-205, 2023 03.
Article in English | MEDLINE | ID: covidwho-2309842

ABSTRACT

BACKGROUND: Autopsy has benefited the practice of medicine for centuries; however, its use to advance the practice of oral health care is relatively limited. In the era of precision oral medicine, the research autopsy is poised to play an important role in understanding oral-systemic health, including infectious disease, autoimmunity, craniofacial genetics, and cancer. TYPES OF STUDIES REVIEWED: The authors reviewed relevant articles that used medical and dental research autopsies to summarize the advantages of minimally invasive autopsies of dental, oral, and craniofacial tissues and to outline practices for supporting research autopsies of the oral and craniofacial complex. RESULTS: The authors provide a historical summary of research autopsy in dentistry and provide a perspective on the value of autopsies for high-resolution multiomic studies to benefit precision oral medicine. As the promise of high-resolution multiomics is being realized, there is a need to integrate the oral and craniofacial complex into the practice of autopsy in medicine. Furthermore, the collaboration of autopsy centers with researchers will accelerate the understanding of dental, oral, and craniofacial tissues as part of the whole body. CONCLUSIONS: Autopsies must integrate oral and craniofacial tissues as part of biobanking procedures. As new technologies allow for high-resolution, multimodal phenotyping of human samples, using optimized sampling procedures will allow for unprecedented understanding of common and rare dental, oral, and craniofacial diseases in the future. PRACTICAL IMPLICATIONS: The COVID-19 pandemic highlighted the oral cavity as a site for viral infection and transmission potential; this was only discovered via clinical autopsies. The realization of the integrated autopsy's value in full body health initiatives will benefit patients across the globe.


Subject(s)
Biological Specimen Banks , COVID-19 , Humans , Autopsy , Pandemics , Oral Health
2.
Clin Microbiol Infect ; 28(8): 1066-1075, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1859445

ABSTRACT

BACKGROUND: Many postmortem studies address the cardiovascular effects of COVID-19 and provide valuable information, but are limited by their small sample size. OBJECTIVES: The aim of this systematic review is to better understand the various aspects of the cardiovascular complications of COVID-19 by pooling data from a large number of autopsy studies. DATA SOURCES: We searched the online databases Ovid EBM Reviews, Ovid Embase, Ovid Medline, Scopus, and Web of Science for concepts of autopsy or histopathology combined with COVID-19, published between database inception and February 2021. We also searched for unpublished manuscripts using the medRxiv services operated by Cold Spring Harbor Laboratory. STUDY ELIGIBILITY CRITERIA: Articles were considered eligible for inclusion if they reported human postmortem cardiovascular findings among individuals with a confirmed SARS coronavirus type 2 (CoV-2) infection. PARTICIPANTS: Confirmed COVID-19 patients with post-mortem cardiovascular findings. INTERVENTIONS: None. METHODS: Studies were individually assessed for risk of selection, detection, and reporting biases. The median prevalence of different autopsy findings with associated interquartile ranges (IQRs). RESULTS: This review cohort contained 50 studies including 548 hearts. The median age of the deceased was 69 years. The most prevalent acute cardiovascular findings were myocardial necrosis (median: 100.0%; IQR, 20%-100%; number of studies = 9; number of patients = 64) and myocardial oedema (median: 55.5%; IQR, 19.5%-92.5%; number of studies = 4; number of patients = 46). The median reported prevalence of extensive, focal active, and multifocal myocarditis were all 0.0%. The most prevalent chronic changes were myocyte hypertrophy (median: 69.0%; IQR, 46.8%-92.1%) and fibrosis (median: 35.0%; IQR, 35.0%-90.5%). SARS-CoV-2 was detected in the myocardium with median prevalence of 60.8% (IQR 40.4-95.6%). CONCLUSIONS: Our systematic review confirmed the high prevalence of acute and chronic cardiac pathologies in COVID-19 and SARS-CoV-2 cardiac tropism, as well as the low prevalence of myocarditis in COVID-19.


Subject(s)
COVID-19 , Myocarditis , Aged , Autopsy , Humans , Lung , Myocarditis/epidemiology , SARS-CoV-2
3.
Clin Infect Dis ; 73(Suppl_5): S442-S453, 2021 12 15.
Article in English | MEDLINE | ID: covidwho-1574211

ABSTRACT

BACKGROUND: Minimally invasive autopsies, also known as minimally invasive tissue sampling (MITS), have proven to be an alternative to complete diagnostic autopsies (CDAs) in places or situations where this procedure cannot be performed. During the coronavirus disease 2019 (COVID-19) pandemic, CDAs were suspended by March 2020 in Brazil to reduce biohazard. To contribute to the understanding of COVID-19 pathology, we have conducted ultrasound (US)-guided MITS as a strategy. METHODS: This case series study includes 80 autopsies performed in patients with COVID-19 confirmed by laboratorial tests. Different organs were sampled using a standardized MITS protocol. Tissues were submitted to histopathological analysis as well as immunohistochemical and molecular analysis and electron microscopy in selected cases. RESULTS: US-guided MITS proved to be a safe and highly accurate procedure; none of the personnel were infected, and accuracy ranged from 69.1% for kidney, up to 90.1% for lungs, and reaching 98.7% and 97.5% for liver and heart, respectively. US-guided MITS provided a systemic view of the disease, describing the most common pathological findings and identifying viral and other infectious agents using ancillary techniques, and also allowed COVID-19 diagnosis confirmation in 5% of the cases that were negative in premortem and postmortem nasopharyngeal/oropharyngeal swab real-time reverse-transcription polymerase chain reaction. CONCLUSIONS: Our data showed that US-guided MITS has the capacity similar to CDA not only to identify but also to characterize emergent diseases.


Subject(s)
COVID-19 , Autopsy , Brazil/epidemiology , COVID-19 Testing , Humans , Pandemics , SARS-CoV-2 , Ultrasonography, Interventional
4.
EClinicalMedicine ; 35: 100850, 2021 May.
Article in English | MEDLINE | ID: covidwho-1201119

ABSTRACT

BACKGROUND: COVID-19 in children is usually mild or asymptomatic, but severe and fatal paediatric cases have been described. The pathology of COVID-19 in children is not known; the proposed pathogenesis for severe cases includes immune-mediated mechanisms or the direct effect of SARS-CoV-2 on tissues. We describe the autopsy findings in five cases of paediatric COVID-19 and provide mechanistic insight into the mechanisms involved in the pathogenesis of the disease. METHODS: Children and adolescents who died with COVID-19 between March 18 and August 15, 2020 were autopsied with a minimally invasive method. Tissue samples from all vital organs were analysed by histology, electron microscopy (EM), reverse-transcription polymerase chain reaction (RT-PCR) and immunohistochemistry (IHC). FINDINGS: Five patients were included, one male and four female, aged 7 months to 15 years. Two patients had severe diseases before SARS-CoV-2 infection: adrenal carcinoma and Edwards syndrome. Three patients were previously healthy and had multisystem inflammatory syndrome in children (MIS-C) with distinct clinical presentations: myocarditis, colitis, and acute encephalopathy with status epilepticus. Autopsy findings varied amongst patients and included mild to severe COVID-19 pneumonia, pulmonary microthrombosis, cerebral oedema with reactive gliosis, myocarditis, intestinal inflammation, and haemophagocytosis. SARS-CoV-2 was detected in all patients in lungs, heart and kidneys by at least one method (RT-PCR, IHC or EM), and in endothelial cells from heart and brain in two patients with MIS-C (IHC). In addition, we show for the first time the presence of SARS-CoV-2 in the brain tissue of a child with MIS-C with acute encephalopathy, and in the intestinal tissue of a child with acute colitis. Interpretation: SARS-CoV-2 can infect several cell and tissue types in paediatric patients, and the target organ for the clinical manifestation varies amongst individuals. Two major patterns of severe COVID-19 were observed: a primarily pulmonary disease, with severe acute respiratory disease and diffuse alveolar damage, or a multisystem inflammatory syndrome with the involvement of several organs. The presence of SARS-CoV-2 in several organs, associated with cellular ultrastructural changes, reinforces the hypothesis that a direct effect of SARS-CoV-2 on tissues is involved in the pathogenesis of MIS-C. FUNDING: Fundação de Amparo à Pesquisa do Estado de São Paulo, Conselho Nacional de Desenvolvimento Científico e Tecnológico, Bill and Melinda Gates Foundation.

5.
Intensive Care Med ; 47(2): 199-207, 2021 02.
Article in English | MEDLINE | ID: covidwho-1002065

ABSTRACT

PURPOSE: This study was designed to evaluate the usefulness of lung ultrasound (LUS) imaging to characterize the progression and severity of lung damage in cases of COVID-19. METHODS: We employed a set of combined ultrasound parameters and histopathological images obtained simultaneously in 28 patients (15 women, 0.6-83 years) with fatal COVID-19 submitted to minimally invasive autopsies, with different times of disease evolution from initial symptoms to death (3-37 days, median 18 days). For each patient, we analysed eight post-mortem LUS parameters and the proportion of three histological patterns (normal lung, exudative diffuse alveolar damage [DAD] and fibroproliferative DAD) in eight different lung regions. The relationship between histopathological and post-mortem ultrasonographic findings was assessed using various statistical approaches. RESULTS: Statistically significant positive correlations were observed between fibroproliferative DAD and peripheral consolidation (coefficient 0.43, p = 0.02) and pulmonary consolidation (coefficient 0.51, p = 0.005). A model combining age, time of evolution, sex and ultrasound score predicted reasonably well (r = 0.66) the proportion of pulmonary parenchyma with fibroproliferative DAD. CONCLUSION: The present study adds information to previous studies related to the use of LUS as a tool to assess the severity of acute pulmonary damage. We provide a histological background that supports the concept that LUS can be used to characterize the progression and severity of lung damage in severe COVID-19.


Subject(s)
COVID-19/diagnostic imaging , Lung/diagnostic imaging , Ultrasonography , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/pathology , Child , Child, Preschool , Correlation of Data , Female , Humans , Infant , Lung/pathology , Male , Middle Aged , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL